向量:重心的證明

1. 設\(D\)為\(\triangle ABC\)中\(BC\)邊中點,由分點公式得\(\overset{\rightharpoonup}{OD} = \frac{\overset{\rightharpoonup}{OB} + \overset{\rightharpoonup}{OC}}{2}\)。

2. 由分點公式求\(\overset{\rightharpoonup}{OG}\):

  • \(\overset{\rightharpoonup}{OG} = \frac{\overset{\rightharpoonup}{OA} + 2\overset{\rightharpoonup}{OD}}{3}\)。
  • 把\(\overset{\rightharpoonup}{OD} = \frac{\overset{\rightharpoonup}{OB} + \overset{\rightharpoonup}{OC}}{2}\)代入上式,\(\overset{\rightharpoonup}{OG} = \frac{\overset{\rightharpoonup}{OA} + 2\times\frac{\overset{\rightharpoonup}{OB} + \overset{\rightharpoonup}{OC}}{2}}{3} = \frac{\overset{\rightharpoonup}{OA} + \overset{\rightharpoonup}{OB} + \overset{\rightharpoonup}{OC}}{3}\)。

3. 兩邊同乘\(3\),得\(3\overset{\rightharpoonup}{OG} = \overset{\rightharpoonup}{OA} + \overset{\rightharpoonup}{OB} + \overset{\rightharpoonup}{OC}\)。

綜上,證得對於\(\triangle ABC\),\(G\)為重心,\(O\)為任意點,有\(3\overset{\rightharpoonup}{OG} = \overset{\rightharpoonup}{OA} + \overset{\rightharpoonup}{OB} + \overset{\rightharpoonup}{OC}\)。
推廣:
$1.若O為原點,則G=\frac{A+B+C}{3}$
$2.求合力時,三股萬有引力的合力=直接對三星球重心的引力\times3$